Case Study

Zheng Gao, Christian Bird, Earl T. Barr

October 2016

Based on four criteria, we select bugs for further manual assessment: ones whose
TypeScript- or Flow-preventability is not agreed upon, ones whose TypeScript-
or Flow-preventability remains unknown in the assessment stage, ones whose
TypeScript- and Flow-preventability differ, and ones that are TypeScript-preventable
under version 2.0 but not under 1.8.

Disagreements Of the 80 uniformly-sampled bugs that we used to calculate
inter-rater agreement, each rater needed to make 160 decisions in total, 80 for
TypeScript-preventability and 80 for Flow-preventability. 138 of these 160 decisions
were unanimously labelled. We define a strong disagreement as a disagreement in
which one rater deems the bug preventable while another deems it unpreventable.
Of the 22 disagreements, 12 are strong.

Let U denote unknown, P preventable, and P unpreventable. We manually
assessed each disagreement without a time bound and found that, in each case, weak
disagreements resolved as follows: UUP — P,UUP — P,UPP — P,UPP — P. In
other words, the rater who confidently assessed #s-(un)preventability within the time
bound was correct every time in our experiment. Our 12 strong disagreements had
three patterns of labels: 2 were PPU, 2 were PPP, and 8 were PPP. After manually
resolving all of them, we found that whenever two raters agreed, they were correct.
Among the 10 strong disagreements where a rater disagreed with the other two,
rater one dissented in 8 cases and rater two in 2 cases. With hindsight, we would
have improved our assessment protocol. We should have specified that each rater
consider whether or not added logic was manual type checking. We would have
agreed on whether or not to consider typos in library names zs-preventable. These
changes alone would have eliminated 7 of the 12 strong disagreements. Please visit
our project page for more details.

Unknowns For the 320 bugs outside the inter-rater dataset, we could not always
decide whether they are ts-preventable within 10 minutes, leaving 18 unknown. The
main obstacles we encountered during the assessment include complicated module
dependencies, the lack of fully annotated interfaces for some modules, large, tangled
fixes that prevented us from isolating the region of interest, mismatches between
the error models of Flow and TypeScript, and the general difficulty of program
comprehension.

For these 18 bugs, we spent as long as needed until we resolved all the unknowns.

We patiently imported all relevant modules by using interface management tools
like Typings', wrote our own annotated interfaces as appropriate, and read the code
base and official documentation when necessary. To validate a ts-unpreventable
assessment, we devised a simple experiment to validate it, as necessary.

As a result of this work, we have successfully labelled all 400 bugs as either
preventable or unpreventable under TypeScript and Flow. TypeScript could have
prevented two of these unknowns for a grand total of 58 (14.5%); Flow catches
one more and reaches 60 (15%) in total. The updated binomial test results shows
that at the confidence level of 95%, the true percentage of Flow- and TypeScript-
preventable bugs falls in the range of [11.5%,18.5%]| and [11.1%, 18%].

The time spent assessing each of these 18 bugs varied significantly, ranging
from 8 minutes to more than 1 hour of dedicated time. Surprisingly, 3 bugs took us
only around 10 minutes to decide their zs-preventability on a fresh restart, which,
we reckon, is due to our increasing expertise.

Classifying ts-unpreventable Bugs Figure 1 categorizes bugs that are unprevenat-
ble under both Flow and TypeScript, after the 18 unknowns were resolved. Recall
that, while BranchError, PredError, and URIError are logic errors in implementing
the specification, SpecError captures all other specification errors. Unsurprisingly,
SpecError, with 186 bugs, accounts for 55% of the total bugs and significantly
outweighs other categories. Errors implementing specification, as a group, over-
whelmingly constitute 78%. This result, yet again, demonstrates the importance of
specifications.

Despite the dominance of errors implementing specification and the fact that
only public bugs are considered, there still exists a non-specification-related oppor-
tunity for type system: StringError. Ranked second in the histogram, StringError
is a broad concept that represents errors caused by the incorrect content of a string,
such as a wrong URL. The reason why StringError is so common, we conjecture,
is two-fold: first, the string type itself is extremely popular; second, JavaScript is
rooted in web applications that extensively use hyperlinks. However, the string
type is opaque to most static type systems, and how to effectively refine it remains
challenging.

Measuring TypeScript 2.0 null Handling Improvement TypeScript 2.0 was
released during this study, giving us the opportunity to measure the effectiveness
of its handling of null and undefined. Prior to 2.0, all types were nullable in
TypeScript. In Flow, all types, except any, void, and null, are non-nullable by
default; one can designate them as nullable by prefixing them with ?. This design
choice enables Flow to elegantly catch incorrect null / undefined usage. TypeScript
2.0 added the compiler option --strictNullChecks, which, when enabled, makes
most types nonnullable, while allowing the user to specify nullability by or-ing null
into a type annotation. For instance, var s: string | null = "foo"; defines s to
be a nullable string.

We reviewed our corpus and found that 22 bugs, an increase of 38%, are

Ihttps://github.com/typings/typings

https://github.com/typings/typings

200
180
160
140
120

20 I B mm e - _
L

S S
©

< <&

> N + N 9

K & & € o & ® @ & <®
<

Figure 1: The histogram of unpreventable public bugs under both Flow and Type-
Script according to the unpreventability taxonomy.

preventable under TypeScript 2.0 but not under TypeScript 1.8. This result decisively
and quantitatively demonstrates the value of TypeScript 2.0’s strict null checking.

Comparing Flow and TypeScript Though sharing a similar annotation syntax,
Flow and TypeScript differ in terms of expressivity and type variance. These
dimensions are hard to quantify. Thus, we compare Flow and TypeScript in terms
of their ability to potentially prevent public bugs had they been used when those
bugs were introduced and the costs of the requisite annotations.

Flow and TypeScript both catch a nontrivial portion of public bugs. In our
dataset, the bugs they can prevent largely overlap, with 8 exceptions: 5 bugs are
only Flow-preventable and 3 only TypeScript-preventable.

One bug is only Flow-preventable because Flow has a better support for the
require() function, Node.js’s module importing mechanism, and manages to detect
that a module specified as the argument of require() does not exist. Another
difference arises because Flow has better support for JavaScript’s native functions,
here parseInt(). The remaining three Flow-preventable bugs share a common
feature that reveals a weakness in TypeScript’s recently introduced handling of nult:
TypeScript does not regard concatenating a possibly undefined or null value to
another of type string as a type error. For example, TypeScript remains silent on
the following statement,

1 var x = + null + " ";

whereas Flow reports a type error:

1: " " + null + " '
A2~ null. This type cannot be added to
1: " " + npull + " '
AAAAAAAAAN string

Without knowing whether TypeScript intentionally allows this behaviour, we cannot
judge this decision, but its cost is substantial: TypeScript could have detected 3

more bugs, which amounts to around 5%.

Two of the three bugs that only TypeScript-preventable arise due to Flow’s
incomplete support for a popular JavaScript idiom, using a string literal as an
index. For example, TypeScript succeeds in detecting the reported error in
conanbatt/OpenKaya:45 when annotating two variables used as indexes i0 and
il with undefined | string | number, whereas Flow fails with the same anno-
tation. The remaining bug, sandeepmistry/node-core-bluetooth:1, arises because
of Flow’s permissive handling of the window object. Below is its error message:

node-core-bluetooth/lib/central-manager-delegate.js:146
}.bind(mapDelegate(self), mapPeripheral(identifier), error));

AAAN

ReferenceError: self is not defined

In JavaScript, self generally refers to the global object, window. This bug is caused
by a operating system upgrade, after which the system no longer recognises self
and forces the developer to use $self. Therefore, the fix simply replaces self with
$self. Both TypeScript and Flow are able to infer that self has type Window. By
reading the issue report and the code, we are able to infer that function mapDelegate
accepts values of only string or number type. In TypeScript, we add the following
annotation to mapDelegate’s definition:

function mapDelegate(self:string | number) {

Upon type checking, TypeScript signals a type error:

central-manager-delegate.ts(146,22): error TS2345: Argument of type 'Window’ is
not assignable to parameter of type ’'string | number’.

Flow, on the other hand, even with the same annotation, does not regard self being
passed to mapDelegate as a type error.

The per-Bug Annotation Tax Everything comes at a price. To enjoy the benefits
that a static type system brings, a developer often needs to annotate their program.
Directly measuring the effort programmers must expend to annotate their programs
for a static type system would requires a large-scale, invasive study of two teams of
developers, one using static types and other dynamic types, with all the attendant
cost and confounds such a large user study would entail. Thus, we resort to under-
approximating the annotation tax with two simple, expedient proxies: token tax, the
number of tokens in the added type annotations, and fime tax, the time spent adding
annotations.

The token tax rests on the intuition that each token must be selected, so this
proxy measures the number of decisions a programmer must make when adding
type annotations. For a ts-preventable bug, we define the token tax as the number of
tokens in the annotation needed to trigger a type error on a line involved in causing
the bug. Let A be a function that returns the syntactical difference between two
code snippets and || || be a function that calculates the number of tokens in a code
snippet. Then, the token tax is

[|A(a(bi),b:)|| (1)

Token Tax Time Tax
Mean Median Mean Median

Flow 1.7 2 2314 133
TypeScript 2.4 2 306.8 262

Table 1: The token tax and time tax measured in seconds for TypeScript- and
Flow-preventable bugs.

To report the time to annotate, we recorded how long we spent annotating each
buggy version in the commit message, creating an electronic labortary notebook.

These measures of the annotation tax are per-bug and underestimate the annota-
tion effort in time and tokens, because our experiment allows us to travel back in
time, knowing exactly which region of code will be touched by a fix in response
to a bug report. With this knowledge, we locally annotate the region aimed at
this specific bug, ignoring unrelated type errors. The developers who originally
committed the buggy code lacked this knowledge and would have had to annotate
the entire program. Nonetheless, we claim this under-approximation is still useful
because when adding code to a statically typed code base, most of the annotations
exist, so this per-bug annotation measure is useful as a floor on the annotation cost
of annotating fixes.

Using this measure, we answer the question “What is the per-bug annotation
tax in number of tokens of TypeScript and Flow, without considering the definition
of shims?”, finding that on average Flow requires 1.7 tokens to detect a bug and
TypeScript 2.4, shown in Table 1. Two factors contribute to this discrepancy: first,
Flow implements stronger type inference, mitigating its reliance on type annotations;
second, Flow’s syntax for nullable types is more compact. As discussed previously,
to denote a variable is nullable in Flow, one simply needs to add a ? before the
type annotation, like ?number, whereas TypeScript requires the use of union type
operator, like number | null | undefined. The benefit of type inference in saving
type annotations is also shown in the median values.

Table 1 exhibits a sharper difference in time tax between Flow and TypeScript.
Thanks to Flow’s type inference, in many cases, we do not need to read the bug
report and the fix, and devise and add a proper type annotation, which leads to the
noticeable difference in annotation time.

Cross Pollination In our experiment and case studies, handling modules was the
most time-consuming aspect of annotating buggy versions. Flow has builtin support
for popular modules, like Node.js, so when a project used only those modules, Flow
worked smoothly. Many projects, however, use unsupported modules. In these
cases, we learned to greatly appreciate TypeScript community’s Definitely Typed
project. Flow would benefit from being able to use DefinitelyTyped; TypeScript
would benefit from automatically importing popular DefinitelyTyped definitions.
Flow would also benefit from supporting the use of string literals as array indices.

TypeScript should borrow more null-handling tactics from Flow, as discussed above,
like preventing the + operator from simultaneously taking null and string as operands.

